

Ref: SMCL/ENV/2016/46

Date: 25/05/2016

To

Additional Director (South)

Ministry of Environment & Forest

Regional Office (Southern Zone)

Kandriya Sadan, IVth Floor, E & F Wings,

17th Main Road, II Block Koramangala,

Bangalore-560034

Subject: 'Six Monthly Compliance Report of Bicholim Iron Ore Mine, Goa'

Respected Sir,

We are herewith submitting the condition wise compliance report as per the conditions laid down in the Environmental Clearance J-11015/45/2005-IA.II(M) dtd 17.09.2007 for "Bicholim Iron Ore Mine (T.C.No. 11/1941, 12/1941, 13/1941, 14/1941 and 15/1941)" for the period October 2015 to March 2016.

Thanking You

Yours faithfully,

Santosh C. Mandrekar

Mines Manager

Sesa Mining Corporation Ltd.,

Bicholim Iron Ore Mine

Bicholim, Goa.

Enclosures: A/A

C.C - Member Secretary, Goa State Pollution Control Board

Sesa Mining Corporation Limited: Bicholim Iron Ore Mine, Dhabdhaba, Bicholim (Goa) 403 504 India T +91 832 6414862

Registered Office: Sesa Ghor, 20 EDC Complex, Patto, Panaji (Goa) - 403 001 India CIN: U13209GA1969PLC000091

Compliance to conditions of Environment Clearance issued by Ministry of Environment & Forest for Bicholim Iron Ore Mine Letter No. J-11015/45/2005-IA.II(M) dtd 17.09.2007

Period: October 2015 to March 2016

Sr.No EC Condition		Status of compliance	Remarks
A.	Specific Conditions		
(i)	Prior approval of the Chief	The eco sensitive zones for	
	Wild Life Warden, Govt. of	the state of Goa have been	
	Goa shall be obtained for	notified by MoEF and	
	mining within 10 km of the	Bicholim mines is out of the	
	buffer zone of Dr. Salim Ali		
	Bird Sanctuary.	of Wild Life Protection Act	
		is not applicable.	
(ii)	No dumping of overburden		
	where natural slope is already		
	exceeding 28° angle.	slope is already exceeding	
	caccamig 20 angic.	28° angle.	
(iii)	Top soil should be stacked	The mine is in operation for	
	properly with adequate	last 50 years and most of the	
	measures at eamarked dump	areas within the mining lease	
	sites. It should be used for	are broken up for mining.	
	green belt development & for	Hence there would be no	
	reclamation & rehabilitation	generation of top soil.	
	of the mined out areas.		
(iv)	OB and other wastes should	Dumping of waste is carried	
	be stacked at earmarked sites	out at ear marked sites as per	
	and should not be kept active		
		Most of the Overburden is	

	D1	hackfilled into nite and are	
	Plantation should be taken up		
	for soil stabilization along the		
	slopes of the dumps and		
	terraced after every 5-6 m of		
	height and overall slope angle	pit. Series of sedimentation	
	shall be maintained at 25-26°.	pits are constructed at the	
	Sedimentation pits shall be	corners of the garland drains	
	constructed at the corners of	and same are desilted before	
	the garland drains.	the onset of monsoon every	
	Retention/Toe walls shall be	year.	
	provided at the base of the		
	dumps.		
(v)	Use of geotextile for dump	Geotextile are extensively	1683.08m2 of dump
	stabilization shall be taken up	used for covering dump	area was covered with
	in critical areas.	slopes to prevent soil	geotextile
		erosion.	
(vi)	Catch drains and siltation	All the runoff water is	Following measures
	ponds of appropriate size,	channelized into mining pits.	were taken:
	gully plugs and check dams	Additionally garland drains	Desilting: 1182.6m3
	should be constructed to	and series of settling ponds	Boulderwall: 521.25m3
	arrest silt and sediment flows	of appropriate size and check	
	from the mining operations.	dams are constructed to	
	Desilting operations shall be	arrest silt and to ensure no	
	undertaken regularly and	sediment flow from the	
	particularly after every	mining operations. Desilting	
	monsoon. Garland drain (size,	of the settling ponds to	
		increase their capacity is	
		carried out before the onset	
	and for waste dump. Sump		
	capacity should be designed		
	keeping 50% safety margin		
	Recepting 5070 Statety intagen		

the state of the s

-				
		over and above peak sudden		
		rainfall and maximum		
		discharge in the area		
-		adjoining the mine site. Sump		
		capacity should also provide		
		adequate retention period to		
		allow proper settling of silt		
		material. Sedimentation pits		
		should be constructed at the		
		corners of the garland drains.		
		Desilted operations shall be		
		undertaken after every		
		monsoon.		
	(vii)	No drilling and blasting shall	No drilling and blasting is	
		be undertaken without	carried out in the mine. Hard	
		approval of the competent	material is broken by means	
		authorities.	of high capacity ripper dozer	
	(viii)	Measures shall be taken for	Regular maintenance of	
		maintenance of vehicles used	vehicles and mining	
		in mining operations and in	machineries are carried out	
		transportation of mineral ore.	by Company's own	
		The vehicles should be	maintenance Department to	
		covered with tarpaulin and	ensure that the emissions are	
		should not be overloaded.	within prescribed norms.	
			Also PUC certificates for	
			Transportation vehicles are	
			obtained & maintained.	
L				

(ix)	Plantation shall be done	Plantation of native species
	which includes a green belt of	is been carried out on dump.
	adequate width around the	
	ML area, along roads, OB	
	dumps (38.558 Ha), plant area	
	by planting suitable native	
	species in consultation with	
	the local DFO / Agriculture	
	Department. The density of	
	the trees should be around	
	2500 plants per ha. Details of	
	allocation of funds shall be	
	made for afforestation and	
	reclamation and details	
	furnished to the ministry and	
	to the MoEF RO, Bangalore.	
(x)	A Progressive Mine Closure	Progressive mine closure
	Plan to reclaim an area of	plan has been prepared and
	220.22 Ha with plantation	approved by IBM, wherein
	shall be prepared and	the details of backfilling and
	implemented. The balance	reclamation are covered.
	excavated void of 8.93 Ha	
	shall be converted into a	
	water reservoir and the sides	
	shall be made gently sloping	
	and plantation developed with	
	peripheral fencing.	

the state of the s

Mineral Waste water from Mineral Wet beneficiation plant from Wastewater (xi) is was not in use during Plant Beneficiation Beneficiation Plant and mine this period discharged into tailing water shall not be discharged ponds. The beneficiation out of the ML and to agricultural fields unless it is plant as well as the tailing conform to ponds are located out side treated prescribed norms. Regular mine lease. Run off water monitoring of mine water from all parts of mine is discharged from all outlets of channelized into mine pit, the mine into nearby water and suspended particles are bodies - Bicholim River, allowed to settle through water courses such as nallahs, addition of flocculent and tributaries, rivulets and to after treatment, water is agricultural fields, shall be pumped out. Regular monitoring of mine water proper and undertaken discharge from all outlets of records maintained thereof. the mine into nearby water bodies is carried out and records of monitoring are maintained Water harvesting measures Rain water is harvested by (xii) should be taken up in and channelizing runoff water around mine site. Further, from dumps into mine pit, desiltation of water harvesting | through garland drains and structures such as check trenches. The same water is dams, water reservoirs and used for activities like dust water channels within the suppression and vehicle lease area shall be carried out | washing. The settling ponds every year before the onset of | constructed at the toe of the dumps also act as means for monsoon. harvesting rain water and for

		ground water recharge. The	
		same are desilted every year	
		before onset of monsoon.	
(xiii)	No groundwater shall be used	No ground water is drawn	Permission from
	for mining operations. Prior	for the mining/ beneficiation	Ground Water cell of
	approval of the MOEF and	operations. Rainwater	Water Resource
	CGWA shall be obtained for	harvested in the mining pits	Department have beer
	using groundwater for	is used for dust suppression	taken vide letter no
	mining/processing operations.	and agriculture. Water	MIN/9/2015 dated
	Additional water requirement,	treated in tailing	11/08/2015
	if any shall be met from	ponds/thickener in reused for	
	recycling of water from	beneficiation and additional	
	mining operations and from	water requirement for	
	rainwater harvesting	beneficiation is met through	
	measures.	river water.	
(xiv)	Regular monitoring of ground	Regular monitoring of	Water monitorin
	water level and quality should	ground water level and	reports are attached a
	be carried out by establishing	quality is carried out.	annexure I
	a network of existing wells		
	and construction of new		
	piezometers at suitable		
	locations in project area. The		
	frequency of monitoring		
	should be minimum four		
	times in a year -January, Pre-		
	monsoon (April-May),		
	monsoon (August), post-		
	monsoon (November) and		
	winter (January) seasons for		
	groundwater level and in May		
	for quality, particularly for		

.

(Y)

	heavy metals. Data generated		
	from groundwater regime		
	monitoring will be submitted		
	CGWB, Regional Office on		
	an annual basis. The		
	monitoring shall include		
	levels of heavy metals		
	including iron.		
(XV)	A Final Mine Closure Plan,	Final closure plan approved	
	along with details of Corpus	by IBM will be submitted to	
	Fund, should be submitted to	MoEF in accordance with	
	the Ministry of Environment	Rule 23 (c) of MCDR 1988	
	& Forests 5 years in advance	in due course of time.	
	of final mine closure for		
	approval.		
(xvi)	A Consent to operate should	Obtained consent to operate	
	be obtained from GSPCB for	-1	
		PCB/CI-554 dated	
	operations.	07/09/2015 with validity	
		upto 20/05/2017	

B. General Conditions:

В.	General Conditions:		
		N. C	
(i)		Mining is carried out as per	
		mining plan approved by	
	working should be made	Indian Bureau of Willies	
	without prior approval of		
	the Ministry of		
/••×	Environment & Forest.	Production & waste generation	
(ii)		was carried in accordance with	
		mining plan/ scheme by IBM.	
		mining plant scheme by in.	
	iron ore and waste dumps should be made.		
(:::)		Ambient air monitoring is	Graphical Representation
(iii)		conducted as per NAAQS in	
		buffer zone (four locations)and	
		Mine Specific Standard in core	
		zone (four locations).	
		Monitoring is carried out by	
		MoEF accredited lab .Reports	
		are submitted to State Pollution	
	stations should be		
	decided on the		
	meteorological data,		
	topographical features		
	and environmentally and		
	ecologically sensitive		
	targets and frequency of		
	monitoring should be		

	undertaken in consultation with the State Pollution Control Board. Data on environmental	Environment report on water &	
	regularly submitted to the Ministry including its Regional office located at Bangalore and the State Pollution Control Board /	air quality analysis is submitted to MoEF on six monthly bases with a copy to GSPCB.	
(v)	Central Pollution Control Board once in six months. Adequate measures for		
	control of fugitive emissions should be taken during drilling & blasting operations, loading & transportation of mineral, etc. Fugitive dust emission from all the sources should be regularly monitored and	The following measures are taken for control of fugitive dust emission (1) Water sprinkling on mine haulage roads (2) Dumps are covered with geo-textiles and afforested with plants/ grasses which helps in minimizing the fugitive dust. (3) No Drilling & blasting is carried out (4) Ore carrying trucks plying	

		transportation of	provided to prevent spillage.	
		minerals, etc. should be		
		provided and properly		
		maintained.		
	(vi)	Adequate measures	Dumpers & Heavy Earth	
		should be taken for	Moving Machinery are	
		control of noise levels	provided with A/C cabins	
		below 85 dBA in work	which minimize the impact of	
		environment. Workers	noise on operator. Regular	
		engaged in blasting and	maintenance of Heavy Earth	
		drilling operations,	Moving Machinery is carried	
		operations of HEMM,	out, which helps in minimizing	
		etc. should be provided	noise levels .All the employees	
		with ear plugs / muffs.	working at mines are provided	
			with personnel protective	
			equipments like ear plugs /ear	
			muffs	
	(vii)	Industrial waste water	water from mine is properly	
		(workshop, mineral	channelized into settling ponds	
		processing plant and	and treated before discharge if	
		waste water from the	any, outside the mine lease. Oil	
		mine) should be properly	and grease trap is installed in	
		collected, treated so as to	the mine for treatment before	
		conform to the standards	discharge of effluents from	
		prescribed under GSR		
		422 (E) dated 19 th May,		
		1993 and 31st December,		
		1993 or as amended from		
		time to time. Oil and		
		greases trap should be		
		installed in the mine for		
-4 W				

	treatment before		
	discharge of workshop		
	effluents. There shall be		
	no discharge of waste		
	water from the mine site		
	even during peak		
	monsoon season.		
(viii)	Personal working in	Regular monitoring of workers	
	dusty areas should wear	health is being carried out.	
	protective respiratory	However, for the safety of	
	devices and they should	workers at site, engaged at	
	also be provided with	strategic locations/dust	
	adequate training and	generation points like loading	
	information on safety and	and unloading points, dust	
	health aspects.	masks are provided. Company	
	Occupational health	has employed doctor who is	
	surveillance program of	trained in occupational health.	
	workers should be	Periodic personal dust	
	undertaken periodically	monitoring is carried out for	
	and take corrective	the employees for the exposure	
	measures, if required.	to dust and health records are	
		maintained. Various awareness	
		programmes are organized for	
		the workers related to	
		occupational health and safety	
		issues.	
(ix)	The data on	Data on environmental quality	
	environmental quality	is analyzed by a MoEF	
	should be collected and	approved Laboratory. The	
	analyzed either through	reports are submitted to MoEF	
	an in-house	and GSPCB on a regular basis.	

	environmental laboratory		
	established with adequate		
	number and type of		
	pollution monitoring and		
	analysis equipment or got		
	analyzed through an		
	approved laboratory		
	under the Environment		
	(Protection) Rules, 1986		
	in consultation with the		
	State Pollution Control		
	Board.		
(x)	A separate environmental	Environment management cell	Chief Operating Officer
	management cell with	consists of multidisciplinary	(CEO)
	suitable qualified	qualified personnel. The	Krishna Kulkarni
	personnel should be set -	department reports to the head	(Head, HSE)
	up under the control of	of the organization.	
	Senior Executive, who		Jagdish Desai
	will report directly to the		
	Head of the Organization.		T. T. Caralan
			Vandita Sneha
(xi)	The funds earmarked for	Separate funds are earmarked	
	environmental protection	in the revenue budget for	
	measures should be kept	various environment activities	
	in separate account and	like reclamation, dust	
	not diverted for other	suppression, erosion control	
	purpose. Year-wise	measures, water treatment etc.	
	expenditure should be	with proper tracking.	
	reported to the Ministry	The environmental expenditure	
	of Environment &	for FY: 2015-16 for Bicholim	
	Forests.	Mine is:	

.

		Purpose	Amount in Rs	
		Dust Suppression	9,95,624	
		Erosion Control	4,04,115	
		General	9.2	
		Environment		
		Expenditure	93,041	
		Mine Reclamation Statutory	94,692	
		Requirement	6,02,471	
		Water Treatment	16,05,19	
		Total Expenditure	37,95,137	
(xii)	The project authorities	Regional office, B	angalore is	
	should inform to the	kept informed reg	arding date	
	Regional Office located	of final closure	and final	
	at Bangalore regarding			
	date of financial closures	concerned authoritie	es.	
	and final approval of the			
	project by the concerned			
	authorities and the date of			
	start of land development			
	work.			
(xiii)	The regional office of the	Full co-operation	and all	
	Ministry located at	necessary support	will be	
	Bangalore shall monitor	provided during th	e visit and	
	compliance of the	data will be furnis	shed as per	
	stipulated conditions. The	the requirements.	₩7	
*	project authorities should			
Au C	extend full co-operation			
	to the officer (s) of the			
	Regional Office by			
	furnishing the requisite			

and a copy	of the		
clearance le	etter is		
available with	the State		
Pollution Cont	rol Board		
and also at web	site of the	(35)	
Ministry of En	vironment		
and Forest	at http:/		
envfor.nic.in.			

-

Vedanta Limited Mining Division, Codil Wheels, P.O. Rivinpale, Gon-Morre

A Law is subject, Forests and Climate change, Govi, of India Vide Notification & O.A.37(E) dated 12th January 2015, Valid up to 11.01.2020

* Certified by ISO 9001:2008, ISO 14001:2004 and OHSAS 18003:2007

Surface Water Analysis Report for the Month of March 2016

Mine Name: Bicholim Mine

Date of Sample collection: 24.03.2016

Standard method used for analysis: APHA Standard

Date of Receipt of sample: 24.03.2016 Analysis completion date: 31.03.2016

						Location			
Parameter	Unit	Permissible	Tilop settling poud (Vagachiper lease Discharge)	pond (Lam gao	(Totichomordongor	Upstream River Assanora	Downstream River Assanora	Upstream River Bicholim	Downstream River Bicholim
								12	7
					8	7.10	6.94	6.97	6.92
clour	Hazen		6.70	6.25	6.56	7,19	0.85	1.53	0.94
		5.5 to 9.0		1.26	2.26	0.77	56.2	2090	2640
urbidity	NIU		55.2	21	17.5	51.8	124.5	4190	5260
Dissolved Solids	mg/lit		1.1014	41.9	35.1	103.6		3	3 ,
Conductivity	μS/cm			2 2			40.7	1195.7	1581.4
Suspended Solids	mg/lit	50	104	5.8	5.8	43.4	49.2	460	560
Chlorides	mg/lit		15.4	14	12	32	38	48	48
otal Hardness as CaCO3	mg/lit		30		3	10	7.1	82.6	106.9
Calcium as Ca ^{**}	mg/lit		70.0	1.0	1.0	1.5	4.4		2.8
Magnesium as Mg ⁺⁺	mg/lit		4:3	4	1.5	1.7	2.6	2.5	0.14
Viagnesium as me	mg/lit		1.5	DDI	BDL	0.08	0.10	0.13	0.1.
Sulphate as SO4	mg/lit		0.08	BDL	-0.38	0.3	0.3	0.5	V.7
Phosphate as PO ₄	mg/lit		0.2	0.2	7.3	<3	<3	<3	<u> </u>
Nitrate as NO3	mg/lit			<3	10	20	20	29	39
B.O.D (3days, 27°C)	A STATE OF THE PARTY OF THE PAR		10	10	7.4.4	0.04	0.02	0.01	0.02
C.O.D	mg/lit		0.03	0.02	0.14	BDL	BDL	BDL	BDL
Fotal Iron	mg/lit		BDL BDL	BDL	BDL	7	7	6	6
Manganese as Mn	mg/lit		6	6	7	1 1	1.1	1.2	1.4
D.O.	mg/lit		NIGH	Nil	Nil	Tit			

BDL-Below Detection Limit

mg/lit

Govt. Analyst

Oil & Grease

M/s Sesa Environment Laboratory

Vedanta Limited, Mining Division, Codli Mines, P.O. Kirlapale, Goa-403727

Recognised by Ministry of Environment, Forests and Climate change, Govt. of India Vide Notification .S.O. 137(E). dated 12th January 2015, Valid up to 11.01.2020 * Certified by ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007

Surface Water Analysis Report for the Month of February 2016

Mine Name: Bicholim Mine Date of Sample collection: 09.02.2016

Standard method used for analysis: APHA Standard

Date of Receipt of sample: 09.02.2016 Analysis completion date: 15.02.2016

		Location									
Parameter	Unit *	Permissible limits	1Top settling pond (Vagachiper lease Discharge)	2Top settling pond (Lam gao lease Discharge)	3Top settling pond (Totichomordongor lease Discharge)	Upstream River Assanora	Downstream River Assanora	Upstream River Bicholim	Downstream Rive Bicholim		
				5	2	5	24	23	3		
Colour	Hazen		0.07	6.4	6.58	6,75	6.86	6.9	7.06		
рН	****	5.5 to 9.0	6.97	1.65	1.73	1	0.9	1.01	1.14		
Turbidity	NTU		1.24	19.5	18	238	237	161	180		
Dissolved Solids	mg/lit	77.77	54.1	38.9	36.1	475	474	322	360		
Conductivity	μS/cm		108.2	30.7	2	4	3	3	3		
Suspended Solids	mg/lit	100	2	<u> </u>	5.8	49.2	109.9	61.7	70.4		
Chlorides	mg/lit		14.5	5.8	10	38	70	64	68		
Total Hardness as CaCO3	mg/lit		34	2.4	16	6.4	8	12	12		
Calcium as Ca'	mg/lit		8.8	2.4	1.5	5.3	1.2:2	8.3	9.2		
Magnesium as Mg**	mg/lit		2.9	1.0	1 7	17	2.9	2.1	2.4		
Sulphate as SO4	mg/lit	P075	1.8	1.3	0.02	0.01	0.01	0.02	0.06		
Phosphate as PO ₄	mg/lit	5	0.03	0.01	0.03	0.33	0.35	0.51	0.67		
Nitrate as NO3	mg/lit	10	0.43	0.42	0.65	0.55	<3	<3	<3		
B.O.D (3days, 27°C)	mg/lit	30	<3	<3	< 3	25	17	52	43		
C.O.D (300) 3, 2 3	mg/lit	250	77.8	<10	35	0.07	0.02	0.01	0.02		
Total Iron	mg/lit	3	0.04	0.02	0.15	BDL.	BDL	BDL	BDL		
Manganese as Mn	mg/lit	2	BDL	BDL	BDL	DDU	7	6	6		
	mg/lit		6	7	7	13	4		1.4		
D.O Oil & Grease	mg/lit	10	<1	<1	<1	1.4					

BDL-Below Detection Limit

Govt. Analyst

Laboratory Incharge

M/s Sesa Environment Laboratory

Vedanta Limited Mining Division Codli Mines, P.O. Kirlapale Goa-403727

Recognised by Ministry of Environment, Forests and Climate change, Govt. of India Vide Notification S.O.137(E). dated 12th January 2015, Valid up to 11.01.2020 * Certified by ISO 9001:2008, ISO 14001 (2004 and OHSAS 18001:2007

Surface Water Analysis Report for the Month of January 2015

Mine Name: Bicholim Mine

Date of Sample collection: 21.01.2016

Standard method used for analysis: APHA Standard

Date of Receipt of sample: 21.01.2016 Analysis completion date: 27.01.2016

			Location								
Parameter	Unit.	Permissible limits	2Top settling pond (Lam gao	3Top settling pond (Totichomordongor lease Discharge)	Upstream River Assanora	Downstream River Assanora	Upstream River Bicholim	Downstream River Bicholim			
		MANAGE .	lease Discharge)	lease Discussion	33	34	2	5			
olour	Hazen	****	4	- 40	6.43	6.44	6.44	6.47			
		5.5 to 9.0	5.5	5.12	1.89	2.34	0.95	0.89			
	NTU		1.21	1.15	69.5	57.7	124	167			
urbidity	mg/lit		18	19	138.8	115.3	249	333			
issolved Solids	μS/cm		36	38.1	130.0	3	3	2			
onductivity	mg/lit	100	3	2	20.2	19.3	43.4	61.7			
uspended Solids	mg/lit		5.8	7.7	20.3	26	64	72			
hlorides	mg/lit		16	8	160	4.80	11.2	12.80			
otal Hardness as CaCO3	mg/lit		1.6	1.6	7:01	3.40	8.75	9.72			
alcium as Ca *	* mg/lit		2.92	0.97	17.01	E	3.8	3.7			
idElicolulus activid	mg/lit		2.8	4.3	4.6	prot	BDL	BDL			
ulphate as SO4		5	BDL	BDL	BDL	BDL	0.31	0.2			
hosphate as PO ₄ *	mg/lit	10	0.26	0.1	0.4	0.03	0.31	4			
litrate as NO3	mg/lit	20	< 3	<3	<3	< 3	20	20			
.O.D (3days, 27°C)	mg/lit	250	<10	<10	30	20	0.10	0.13			
.O.D	mg/lit	250	0.26	0.15	0.23	0.25	0.12	phi			
otal lron	mg/lit	3	0.01	BDL	0.06	BDL	BUL	6			
Manganese as Mn	mg/lit	4	7	7	3	7		7 4			
0.0	mg/lit			<u> </u>	1	1		4.4			
Oil & Grease	mg/lit	10									

BDL-Below Detection Limit

Note:- No water discharge from 1 Top settling pond

Laboratory Incharge

1/15 Ses Berginsmittent Laboratory

Vedanta Limited Avioring Division Fodh Mines, P.O. Kirtapale (Goa-403727

Recognised by Ministry of Environment, Forests and Climate change, Govt. of India Vide Notification S.O. 137(E). Dated 12th January 2015, Valid up to 11.01.2020 * Certified by ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007

Surface water Analysis Report for the month of December 2015

Mine Name: Bicholim Mine Date of Sample collection:28.12.2015 Standard method used for analysis: APHA Standard Permissible limits - Applicable only for Mine Discharge

Date of Receipt of sample: 29/12/2015 Analysis completion date: 04/01/2016

				Lo	cation			
Parameter	Unit	Permissible limits	2Top settling pond (Lam gao lease Discharge)	5Top settling pond (Totichomordong or lease Discharge)	Upstream Assanora River	Downstream Assanora River	Upstream Bicholim River	Downstream Bicholim River
			Q	14	5	14	10	12
Colour	Hazen	F F 1- 0 0	5.5	5.5	6.36	6.23	6.71	6.85
oH 4		5.5 to 9.0	1.83	1.18	3.15	3.71	3.7	3.91
Turbidity	NTU	THE ME SHOULD	19.6	21.8	430	466	62.4	63.2
Dissolved Solids	mg/lit		39.2	43.6	861	929	124.8	126.1
Conductivity	μS/cm	400	37.2	2	4	3	4	3
Suspended Solids	mg/lit	100	OEE	7.60	215.7	226.1	11.40	10.45
Chlorides	mg/lit		8.55 9.17	7.34	89.87 12.47	95.37	44.02	42.18
Total Hardness as CaCO3	mg/lit		2.93	2.20		11.74	11.00	11.74
Calcium as Ca ⁺⁺	mg/lit			0.45	14.26	16.04	4.01	: 3.12
Magnesium as Mg**	mg/lit		0.45	0.24	4.1	4.6	5.3	4.1
Sulphate as SO4	mg/lit		0.1	BDL	BDL	BDL	BDL	BDL
Phosphate as PO ₄	mg/lit	5	BDL	0.24	0.1	0.1	0.02	0.1
Nitrate as NO3	mg/lit	10	0.14	U.Z.1	~2	<3	<3	<3
B.O.D (3days, 27°C)	mg/lit	30	<3	< 3	20	24	20	20
C.O.D	mg/lit	250	<10	0.21	0.39	0.27	0.15	0.16
Total Iron	mg/lit	3	0.09	0.21	0.11	0.18	0.007	0.01
Manganese as Mn	mg/lit	2	0.01	0.02	4.5	4.3	4.5	4.2
D.0	mg/lit		4.3	4.3 NEI	1 1	1.2	1.	1.2
Oil & Grease	mg/lit	10	<1	INIL	1.1			

Note:- No discharge from 1 Top settling pond

BDL-Below Detection Limit

M/s Sesa Environment Laboratory

Tedanta Limited, Michael Division (Codil Mines, P.O. Kirlapole (Gon. 403727)

Recognised by Ministry of Environment, Forests and Climate change, Govt. of India Vide Notification .S.O. 137(E). Dated 12th January 2015, Valid up to 11.01.2020 * Certified by ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007

Surface Water Analysis Report for the Month of November 2015

Mine Name: Bicholim Mine

Date of Sample collection:23.11.2015

Standard method used for analysis: APHA Standard Permissible limits - Applicable only for Mine Discharge Date of Receipt of sample: 23/11/2015 Analysis completion date: 28/11/2015

		Location									
Parameter	Unit	Permissible	1Top settling pond (Vagachiper lease Discharge)	2Top settling pond (Lam gao lease Discharge)	5Top settling pond (Totichomordon gor lease Discharge)	Upstream River Assanora	Downstream River Assanora		Downstream River Bicholim		
			17	17	48	18	19	27	24		
Colour	Hazen		6.52	5.54	5.58	5.10	5.05	6.5	6.58		
pH		5.5 to 9.0	1.70	1.86	1.88	1.61	1.72	1.22	1.20		
Turbidity	NTU			18.5	21.8	28	22.5	55.3	74		
Dissolved Solids	mg/lit		49.9	37.1	43.8	42	45.2	109.8	108		
Conductivity	μS/cm		99.8	2	7	3	3	4	2		
Suspended Solids	mg/lit	100	3	6.65	8.55	3.80	4.75	8.55	7.60		
Chlorides	mg/lit		16.15	12.24	12.24	12.24	12.24	42.84	40.8		
Total Hardness as CaCO3	mg/lit		32.64	1 7 7	3.26	2.45	2.45	10.61	9.79		
Calcium as Ca ^{**}	mg/lit		8,16	1.00	0.99	. 1.49	1.49	3.97	3.97		
Magnesium as Mg ⁺⁺	mg/lit	**************************************	2.97	0.24	0.14	4.8	4.8	3.1	2.8		
Sulphate as SO4	mg/lit	w	0.2	0.34	BDL	BDL	BDL	BDL	BDL		
Phosphate as PO ₄	mg/lit	5	BDL	BDL	1 6	0.1	1.62	0.18	0.18		
Nitrate as NO3	mg/lit	10	0.14	U. J.	1.0	23	<3	<3	3.8		
B.O.D (3days, 27°C)	mg/lit	3.0	<3	<3	1.6	17	20	19	20		
COD	mg/lit	250	<10	<10	10	0.00	0.10	0.12	0.11		
Total Iron	mg/lit	3	0.12	0.10	0.03	0.03	0.03	0.03	0.02		
Manganese as Mn	mg/lit	2	0.03	0.04	U.U4	1 2	44	4.2	4.1		
D.O.	mg/lit		4.4	4.1	4.5	1.0	1 2	1	1.2		
Oil P Campon	mg/lit	10	Nil	Nil	NIL	<u> </u>	3, 4 6-4	1			

RDL-Below Detection Limit

M/s Sesa Environment Laboratory

Vedoista Limited Mining Bivision Codii Mines, P.O. Kirlapale , Goa-403727

Recognised by Ministry of Environment, Forests and Climate change, Govt. of India Vide Notification .S.O.137(E). Dated 12th January 2015, Valid up to 11.01.2020

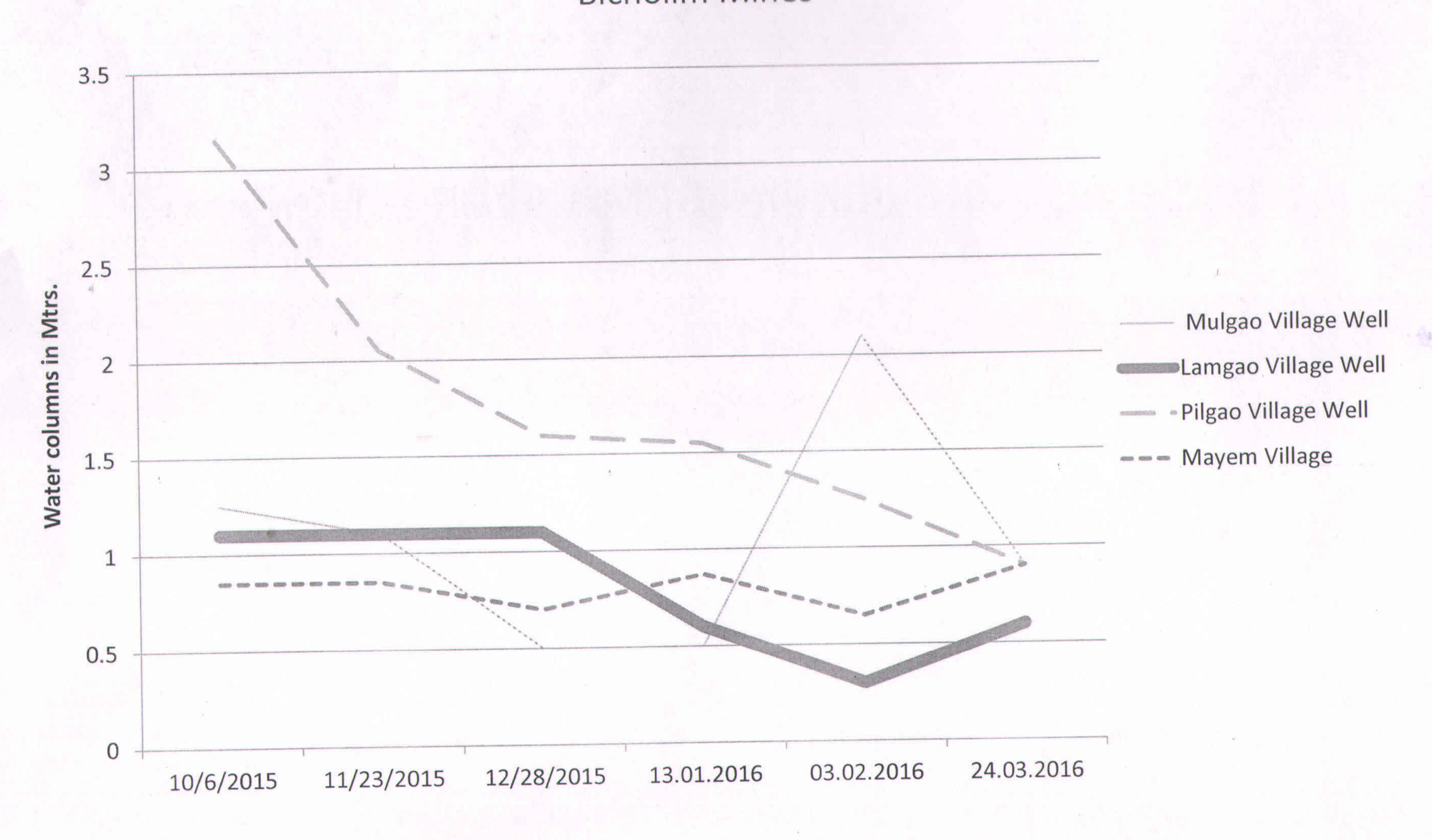
* Certified by ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007

Surface Water Analysis Report for the Month of October 2015

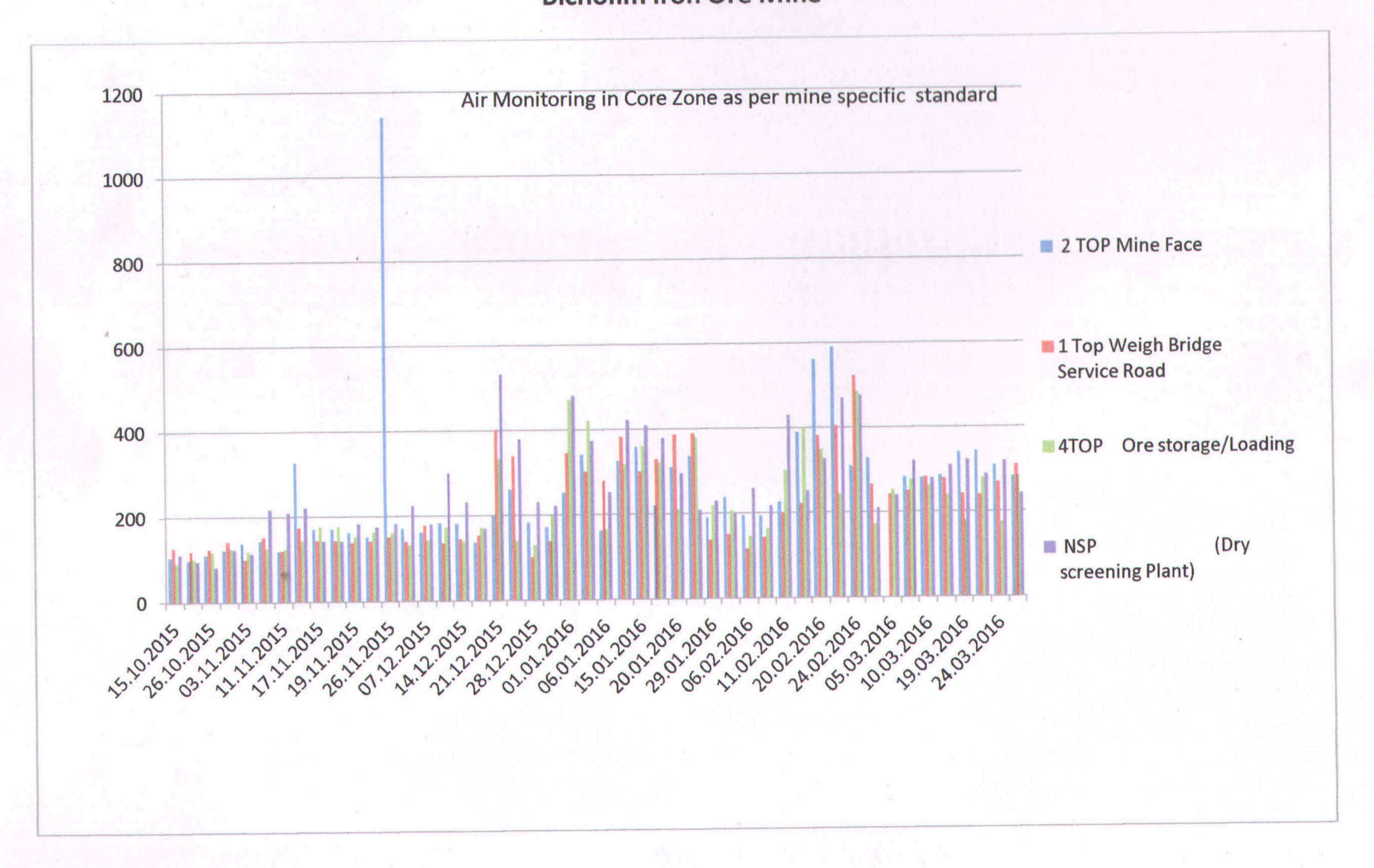
Mine Name: Bicholim Mine

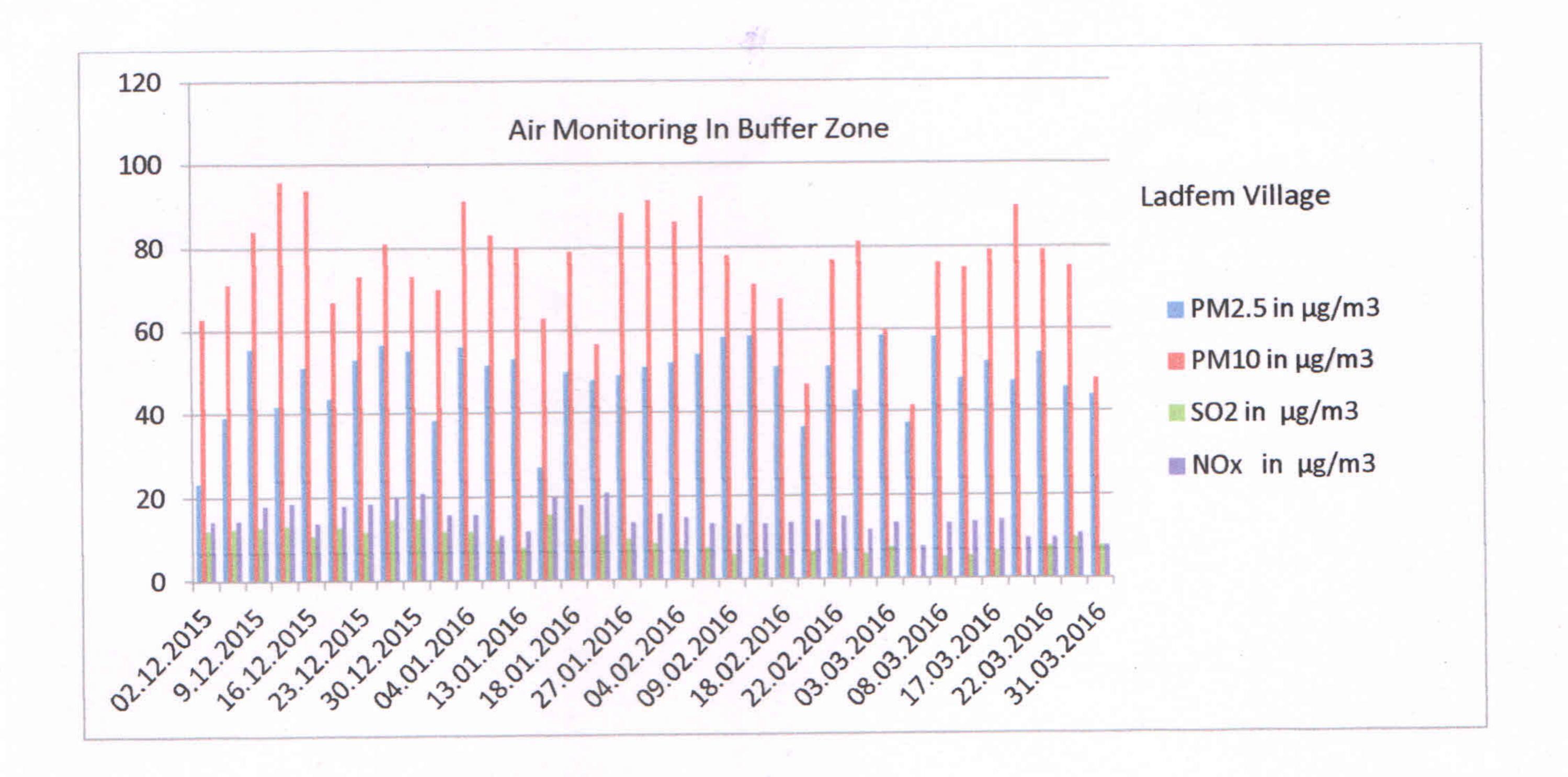
Date of Sample collection: 06.10.2015

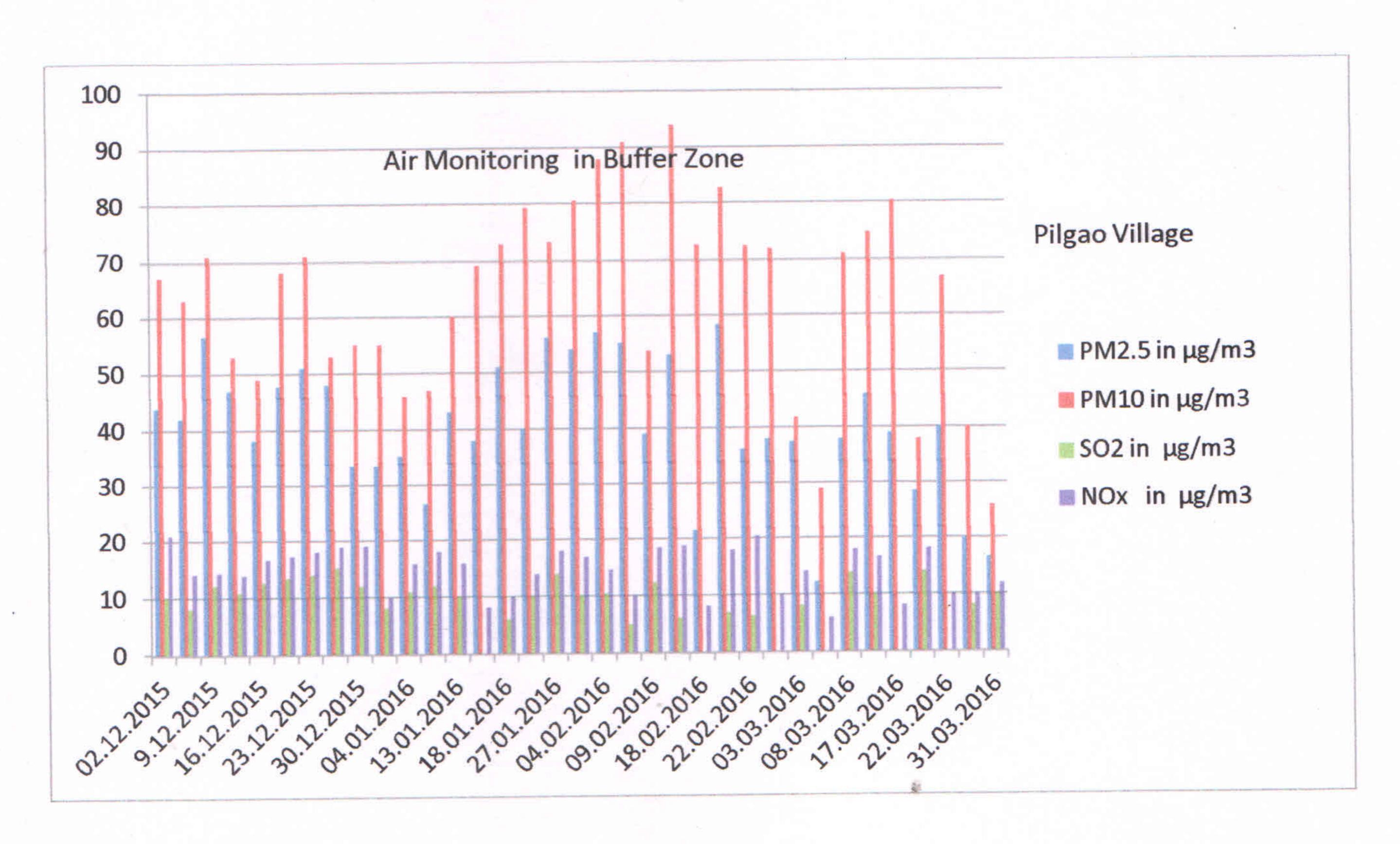
Standard method used for analysis: APHA Standard Permissible limits - Applicable only for Mine Discharge Date of Receipt of sample: 07.10.2015 Analysis completion date: 12.10.2015

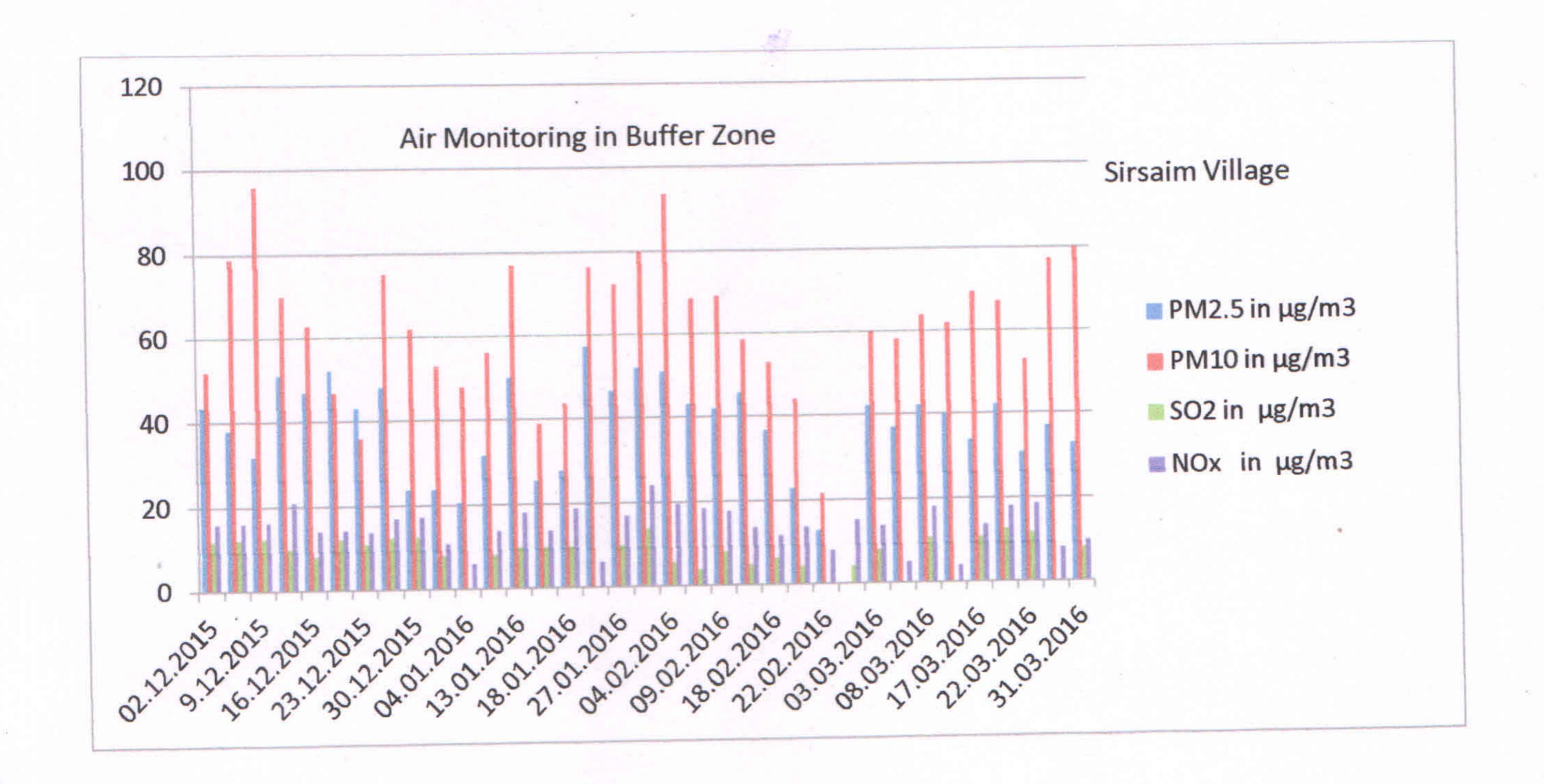

		Location										
Parameter	Unit	Permissible limits	1Top settling pond (Vagachiper lease Discharge)	2Top settling pond (Lam gao lease Discharge)	3Top settling pond (Totichomordo ngor lease Discharge)	Upstream River Assanora	Downstream River Assanora	Upstream River Bicholim	Downstre m River Bicholim			
Colour	Hazen		7	10	27	35	33	34	36			
5U		5.5 to 9.0	6.37	5.84	5.79	-6.5	6.54	6.81	6.76			
Turbidity	NTU		2.22	1.83	1.83	2.1	2	2.73	2.5			
Dissolved Solids	mg/lit		43.9	17.6	19.3	124	126	39.7	39			
Conductivity	μS/cm		88.1	35.2	39.2	249	252	79.5	79			
Suspended Solids	mg/lit	100	4	3	3	3	3 -	3	2			
Chlorides	mg/lit		12.35	5.7	5.7	55.1	55.10	7.6	6.65			
Total Hardness as CaCO3	mg/lit		30.6	12.24	12.24	40.8	42.84	32.64	32.64			
Calcium as Ca	mg/lit		6.53	1.63	3.26	6.53	7.34	6.53	7.34			
Magnesium as Mg ⁺⁺	mg/lit		3.47	1.98	0.99	5.95	5.95	3.97	3.47			
Sulphate as SO4	mg/lit	an Amerika de	0.1	0.24	4.1	4.6	5.3	4.1	3.7			
Phosphate as PO ₄	mg/lit	5	BDL	BDL	BDL	BDL	BDL	BDL	BDL			
Nitrate as NO3	mg/lit	10	0.1	0.31	0.12	0.1	0.02	0.1	0.1			
B.O.D (3days, 27°C)	mg/lit	30	<3	<3	<3	<3	<3	<3	3.8			
C.O.D (3days, 27 C)	mg/lit	250	<10	<10	20	14	2.0	20	16			
Total Iron	mg/lit	3	0.11	0.09	0.10	0.1	0.09	0.11	0.16			
Manganese as Mn	mg/lit	2	0.03	0.05	0.03	0.03	0.02	0.02	0.01			
D.O	mg/lit	+ m++	4.10	4.2	4.4	4.3	4,5	4.20	4.9			
Oil & Grease	mg/lit	10	<1	<1	<1	1.2	1.5	<1	<1			

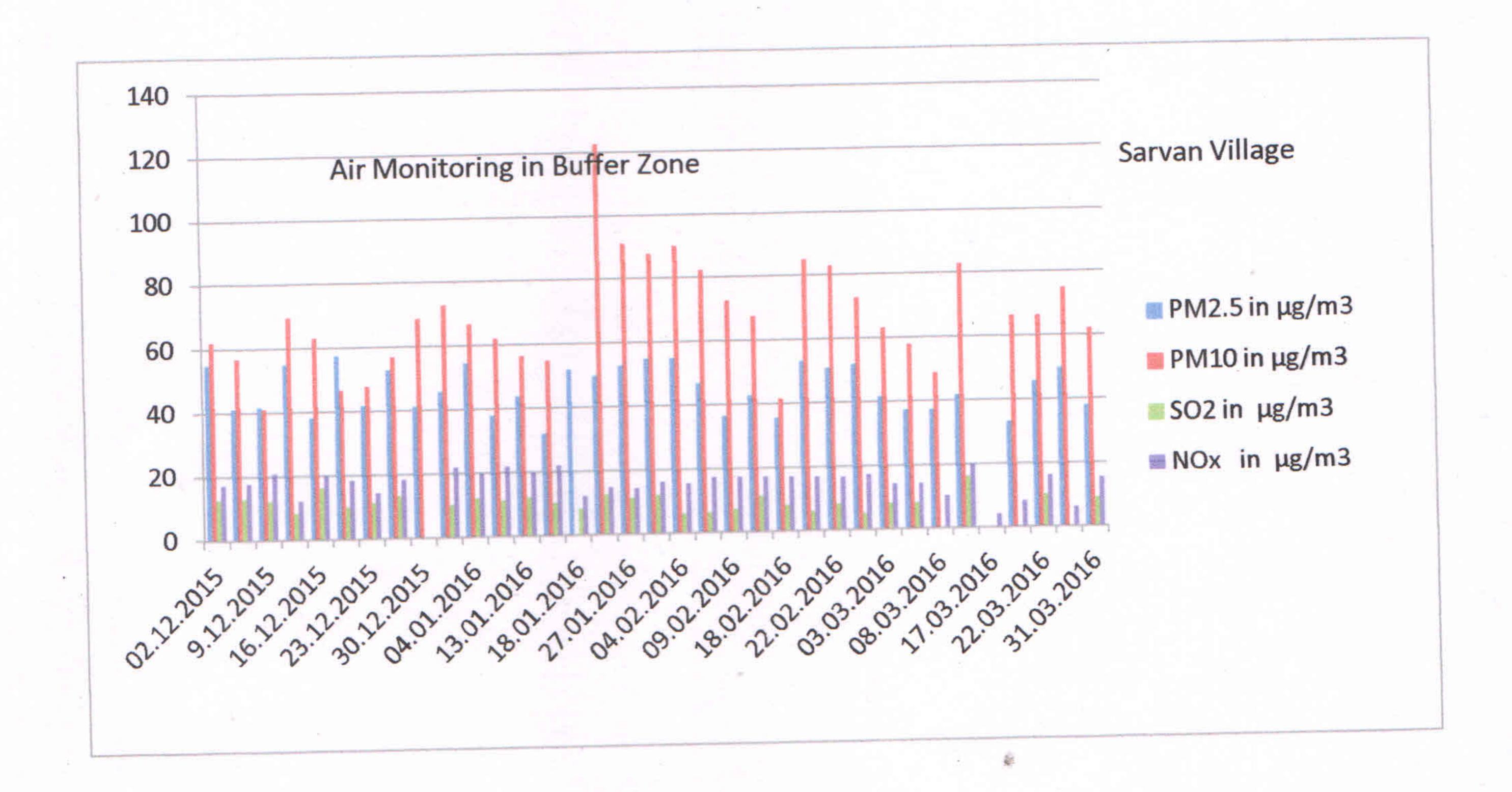
BDL- Below Detection Limit


COURT AND AUGST


Laboratory Incharge


Well Level Water Report Bicholim Mines




Ambient Air Quality Monitoring report Bicholim Iron Ore Mine

